Stochastic Calculus: Ito's integral

Sandeep Juneja

October 2025

First Order Variation (FV)

Definition: First Order Variation of a function f

$$FV(f) = \lim_{n \to \infty} \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \quad (*)$$

- The partition is $0 = t_0 < t_1 < \cdots < t_n = T$.
- Taking $t_i = \frac{iT}{n}$.

First Order Variation (FV)

For a differentiable function f

Using the Mean Value Theorem, (*) can be written as:

$$FV(f) = \lim_{n \to \infty} \sum_{i=0}^{n-1} |f'(t_i^*)| (t_{i+1} - t_i), \quad t_i \le t_i^* \le t_{i+1}$$

$$= \int_0^T |f'(t)| dt$$

Conclusion: For a continuously differentiable function, FV is finite.

First Order Variation of Brownian Motion (BM)

FV of Brownian Motion $\{B_t : 0 \le t \le T\}$

$$FV(B) = \lim_{n \to \infty} \sum_{i=0}^{n-1} |B(t_{i+1}) - B(t_i)|$$

- The increment $\Delta B_i = B(t_{i+1}) B(t_i) \sim N(0, t_{i+1} t_i)$.
- Let $Z_i \sim_{i.i.d.} N(0,1)$, then $\Delta B_i = \sqrt{t_{i+1} t_i} Z_i$.

First Order Variation of Brownian Motion (BM)

Again, with $t_i = \frac{iT}{n}$, $t_{i+1} - t_i = \frac{T}{n}$, in distribution

$$FV(B) = \lim_{n \to \infty} \sum_{i=0}^{n-1} \sqrt{\frac{T}{n}} |Z_i|$$
$$= \lim_{n \to \infty} \sqrt{nT} \left(\frac{1}{n} \sum_{i=0}^{n-1} |Z_i| \right)$$

$$\frac{1}{n} \sum_{i=0}^{n-1} |Z_i| \to E[|Z_1|] = \sqrt{2/\pi}$$
 by SLLN.

The expression inside the parenthesis behaves like $\sqrt{n} \cdot (\text{constant})$.

Thus, the limit, the first order variation of BM, is infinite

Quadratic Variation (QV)

Definition: Quadratic Variation of a function *f*

$$QV(f) = \lim_{n \to \infty} \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)|^2$$

• For a continuous function f:

$$QV(f) \le \max_{0 \le i \le n-1} |f(t_{i+1}) - f(t_i)| \times \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)|$$

\$\to 0 \times FV(f) \text{ if } FV(f) < \infty\$

Since f is continuous, $\max_{0 \le i \le n-1} |f(t_{i+1}) - f(t_i)| \to 0$.

• If f has finite FV then QV(f) = 0.

Quadratic Variation of Brownian Motion

$$QV(B_T) = \lim_{n \to \infty} \sum_{i=0}^{n-1} |B(t_{i+1}) - B(t_i)|^2$$

- Again, $B(t_{i+1}) B(t_i)$ equals $\sqrt{T/n} Z_i$ in distribution $(Z_i \text{ is } N(0,1))$.
- Heuristically,

$$QV(B_T) = \lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{T}{n} Z_i^2 = \lim_{n \to \infty} T\left(\frac{1}{n} \sum_{i=0}^{n-1} Z_i^2\right)$$

• Now, $E[Z_i^2] = 1$. By the Strong Law of Large Numbers (SLLN):

$$\frac{1}{n}\sum_{i=0}^{n-1}Z_i^2 \to E[Z_1^2] = 1$$

• Thus, $QV(B_T) = T$.

Quadratic Variation of BM (more precise): L^2 Convergence

Convergence in L^2

- Let $X_n = \sum_{i=0}^{n-1} |B_{t_{i+1}} B_{t_i}|^2$.
- We want to show $X_n \xrightarrow{L^2} T$, which means $E[|X_n T|^2] \to 0$.
- We know $E[X_n] = T$ (because $E[(B_{t_{i+1}} B_{t_i})^2] = t_{i+1} t_i$).
- Need to show $Var(X_n) \to 0$ as $n \to \infty$.

L₂ Convergence

Variance Calculation

Using
$$B_{t_{i+1}} - B_{t_i} = \sqrt{\frac{T}{n}} Z_i$$
, so $(B_{t_{i+1}} - B_{t_i})^2 = \frac{T}{n} Z_i^2$.

$$Var(X_n) = \sum_{i=0}^{n-1} Var\left(\frac{T}{n} Z_i^2\right) \quad \text{(due to independence)}$$

$$= \sum_{i=0}^{n-1} \frac{T^2}{n^2} Var(Z_i^2) = n \cdot \frac{T^2}{n^2} Var(Z_1^2)$$

Since $Var(Z_1^2)$ is a finite constant (it's 2), $\lim_{n\to\infty} Var(X_n) = 0$.

 $=\frac{T^2}{r}Var(Z_1^2)$

Itô's Integral $\int_0^T f dB_t$

- Used to define the value of trading strategies driven by change in underlying assets.
- Defined for "nice functions" $f(\omega, s)$ (a stochastic process) measurable w.r.t. product measure $dP \times dt$,
 - a measure on the smallest sigma algebra containing sets $A \times [t_1, t_2]$ where $A \in \mathcal{F}$ and $0 \le t_1 \le t_2 \le T$, and

$$(d\mathbb{P}\times dt)(A\times [t_1,t_2])=\mathbb{P}(A)\times (t_2-t_1).$$

• We require $E\left[\int_0^T f^2(\omega,s)ds\right] < \infty$ and $f(\omega,s)$ must be \mathcal{F}_s -measurable $\forall s$ (adapted).

Defining Itô's Integral

- $\mathcal{L}^{2}(d\mathbb{P}\times dt)$: The class of all functions f satisfying $E\left[\int_{0}^{T}f^{2}ds\right]<\infty$.
- ullet $\mathcal{H}^2: f \in \mathcal{L}^{oldsymbol{2}}_{(d\mathbb{P} imes dt)}$ and $f(\omega,s)$ must be \mathcal{F}_s -measurable orall s
- \mathcal{H}_0^2 : The class of **simple functions** f defined as:

$$f(\omega,t) = \sum_{i=0}^{n-1} a_i(\omega) I_{(t_i < t \le t_{i+1})}$$

where $a_i(\omega) \in \mathcal{F}_{t_i}$ and $E[a_i^2(\omega)] < \infty$.

Defining Itô's Integral

Itô's Integral for Simple Functions

For $f \in \mathcal{H}_0^2$:

$$\int_{0}^{T} f(\omega, t) dB_{t} = \sum_{i=0}^{n-1} a_{i}(\omega) (B_{t_{i+1}} - B_{t_{i}})$$

- This is the analog of simple functions in the Lebesgue integral definition.
- $\mathcal{H}^2_0\subset\mathcal{L}^2_{(d\mathbb{P} imes dt)}$ (space of all rv with finite second moment) is easy to verify.

Big Claim: Any function $f \in \mathcal{H}^2$ can be approximated by a function in \mathcal{H}_0^2 .

Itô's Geometry (Isometry)

The Isometry Property

For $f \in \mathcal{H}^2$,

$$E\left[\left(\int_0^T f(\omega,t)dB_t\right)^2\right] = E\left[\int_0^T f^2(\omega,t)dt\right]$$

Equivalently,

$$||I_T(f)||_{\mathcal{L}^2(d\mathbb{P})} = ||f||_{\mathcal{L}^2(d\mathbb{P}\times dt)}$$

where $I_T(f) = \int_0^T f(\omega, t) dB_t$.

Proof Sketch for Simple Functions $f \in \mathcal{H}^2_0$

$$E\left[\left(\sum_{i=0}^{n-1}a_i(B_{t_{i+1}}-B_{t_i})\right)^2\right]=E\left[\sum_{i=0}^{n-1}a_i^2(B_{t_{i+1}}-B_{t_i})^2\right]+\sum_{j\neq k}E[\ldots]$$

• Cross Terms Vanish: Since $B_{t_{k+1}} - B_{t_k}$ is independent of \mathcal{F}_{t_k} (and $a_j, a_k, B_{t_{j+1}} - B_{t_j}$ for j < k), the cross terms vanish:

$$E\left[E[a_ja_k\Delta B_j\Delta B_k\mid \mathcal{F}_{\mathsf{max}(t_j,t_k)}]\right]=0$$

Diagonal Terms:

$$\begin{split} E\left[\sum a_{i}^{2}(B_{t_{i+1}}-B_{t_{i}})^{2}\right] &= E\left[E\left[\sum a_{i}^{2}(B_{t_{i+1}}-B_{t_{i}})^{2} \mid \mathcal{F}_{t_{i}}\right]\right] \\ &= E\left[\sum a_{i}^{2}(t_{i+1}-t_{i})\right] \end{split}$$

This equals $E\left[\int_0^T f^2(\omega, s) ds\right]$.

Generalizing Itô's Integral

• Result: Given any $f \in \mathcal{H}^2$, there exist Let $\{f_n\}_{n \in \mathbb{N}}$, a sequence of simple functions in \mathcal{H}_0^2 , such that

$$f_n \xrightarrow{\mathcal{L}^2(d\mathbb{P}\times dt)} f.$$

- Now $\mathcal{L}^2(d\mathbb{P} \times dt)$ is a complete space (any \mathcal{L}^2 space is complete. Not proved).
- The convergence of f_n to f implies $\{f_n\}$ is a Cauchy sequence in $\mathcal{L}^2(d\mathbb{P}\times dt)$.
- By the Itô Isometry:

$$\left\| \int_0^T (f_n - f_m) dB_t \right\|_{\mathcal{L}^2(d\mathbb{P})} = \|f_n - f_m\|_{\mathcal{L}^2(d\mathbb{P} \times dt)}$$

Existence of general Itô's Integral

- Since $||f_n f_m||_{\mathcal{L}^2(d\mathbb{P} \times dt)} \to 0$, the sequence of integrals $\left\{ \int_0^T f_n dB_t \right\}$ is a Cauchy sequence in $\mathcal{L}^2(d\mathbb{P})$.
- $\mathcal{L}^2(d\mathbb{P})$ is also complete.
- Thus, the limit $\lim_{n\to\infty}\int_0^T f_n dB_t$ exists in $\mathcal{L}^{\in}(\lceil \mathbb{P})$.

Definition: $\int_0^T f(\omega, t) dB_t$ is defined as this limit.

Martingale property of Itô's Integral

- Let $I_t(f) = \int_0^t f(\omega, s) dB_s$ for $f \in \mathcal{H}_0^2$, where it takes value $a_i(\omega) \in \mathcal{F}_{t_i}$ for $t \in (t_i, t_{i+1}]$ where $0 = t_0 < \ldots < t_m = T$.
- Then, for $t \in (t_k, t_{k+1}]$

$$\int_0^t f(\omega, s) dB_s = \sum_{i=0}^{k-1} a_i(\omega) (B_{t_{i+1}} - B_{t_i}) + a_k(\omega) (B_t - B_{t_k})$$

Easy to check that

$$\mathsf{E}[\mathsf{I}_\mathsf{t}(\mathsf{f}) \mid \mathcal{F}_\mathsf{u}] = \mathsf{I}_\mathsf{u}(\mathsf{f}) \quad \text{for } u < t$$

• This is shown by splitting the integral at u and using the \mathcal{F}_s -measurability of a_s and the independent increments of BM. (Show!)

Martingale property of Itô's Integral

- The above holds for general $f \in \mathcal{H}^2$.
- Consequence: $I_t(f)$ is a martingale, so $E[I_t(f)] = E[I_0(f)] = 0$.
- Can show Quadratic Variation:

$$QV\left(\int_0^t f(\omega,s)dB_s\right) = \int_0^t f^2(\omega,s)ds$$

Properties of Itô's Integral $I_t(f) = \int_0^t f(\omega, s) dB_s$

- **1** $I_t(f)$ is a **continuous** function of t, $\forall \omega$.
- 2 $I_t(f)$ is \mathcal{F}_{t} -measurable $\forall t$.
- $l_t(f)$ is **linear**.
- $l_t(f)$ is a martingale.
- Itô's Isometry holds.
- **6** $QV(I_t(f)) = \int_0^t f^2(\omega, s) ds$.

Example: $\int_0^t B_s dB_s$

Mean and Variance

Let $I_t(B) = \int_0^t B_s dB_s$. Since $f(s) = B_s \in \mathcal{H}^2$, $I_t(B)$ is a martingale.

- Mean: $E[I_t(B)] = 0$.
- Variance (using Itô Isometry):

$$V(I_t(B)) = E\left[\left(\int_0^t B_s dB_s\right)^2\right]$$

$$= E\left[\int_0^t B_s^2 ds\right] \quad \text{(Isometry)}$$

$$= \int_0^t E[B_s^2] ds \quad \text{(Fubini)}$$

$$= \int_0^t s ds = \frac{t^2}{2}.$$

Example: Closed Form for $\int_0^t B_s dB_s$

- **1** Approximate B_s by simple functions $B_s^{(n)} = \sum_{i=0}^{n-1} B_{s_i} I_{(s_i < s \le s_{i+1})}$.
- ② Show $B_s^{(n)} \to B_s$ in $\mathcal{L}_{d\mathbb{P}\times ds}^2$:

$$E\left[\int_0^t (B_s^{(n)} - B_s)^2 ds\right] = \sum_{i=0}^{n-1} \int_{s_i}^{s_{i+1}} E[(B_{s_i} - B_s)^2] ds$$

Since $E[(B_{s_i} - B_s)^2] = |s - s_i|$, the integral is:

$$\sum_{i=0}^{n-1} \int_{s_i}^{s_{i+1}} (s-s_i) ds = \sum_{i=0}^{n-1} \frac{(s_{i+1}-s_i)^2}{2} \to 0 \quad \text{as } n \to \infty$$

Integral as a limit

$$\int_{0}^{t} B_{s}dB_{s} = \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{s_{i}}(B_{s_{i+1}} - B_{s_{i}})$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{B_{s_{i+1}}^{2} - B_{s_{i}}^{2}}{2} - \frac{1}{2}(B_{s_{i+1}} - B_{s_{i}})^{2} \right)$$
since $a(b - a) = \frac{b^{2} - a^{2}}{2} - \frac{(b - a)^{2}}{2}$. Now,
$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{B_{s_{i+1}}^{2} - B_{s_{i}}^{2}}{2} \right) = \frac{B_{t}^{2}}{2} \quad \text{(Telescopic Sum)}$$

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{1}{2}(B_{s_{i+1}} - B_{s_{i}})^{2} \right) = \frac{1}{2}QV(B_{t}) = \frac{t}{2}$$

$$\implies \int_{0}^{t} \mathbf{B}_{s} d\mathbf{B}_{s} = \frac{\mathbf{B}_{t}^{2}}{2} - \frac{t}{2}$$

Itô's Formula (for $f(B_t)$)

For a twice continuously differentiable function f:

$$f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$$

Derivation Sketch (Taylor Series)

$$f(B_t) - f(0) = \sum_{i=0}^{n-1} (f(B_{t_{i+1}}) - f(B_{t_i}))$$

The Taylor series approximation (up to second order):

$$f(B_{i+1}) - f(B_i) \approx f'(B_{t_i})(B_{t_{i+1}} - B_{t_i}) + \frac{1}{2}f''(B_{t_i})(B_{t_{i+1}} - B_{t_i})^2$$

Itô's Formula (for $f(B_t)$)

The first term converges to the Itô Integral:

$$\sum_{i=0}^{n-1} f'(B_{t_i})(B_{t_{i+1}} - B_{t_i}) \to \int_0^t f'(B_s) dB_s$$

• The second term may be re-expressed as:

$$\frac{1}{2}\sum_{i=0}^{n-1}f''(B_{t_i})\left((B_{t_{i+1}}-B_{t_i})^2-(t_{i+1}-t_i)\right)+\frac{1}{2}\sum_{i=0}^{n-1}f''(B_{t_i})(t_{i+1}-t_i)$$

The first term converges to zero, and the second to

$$\frac{1}{2}\int_0^t f''(B_s)ds$$

Itô's Formula for f(t,x)

Observing that

$$\lim_{n\to\infty}\sum_{i=0}^n(t_{i+1}-t_i)^2=\lim_{n\to\infty}\frac{t^2}{n^2}\cdot n=0$$

$$\lim_{n\to\infty}\sum_{i=0}^{n-1}(t_{i+1}-t_i)(B_{t_{i+1}}-B_{t_i})=0.$$

Ito's lemma extends as

$$f(t, B_t) = f(0, 0) + \int_0^t f_t(s, B_s) ds + \int_0^t f_x(s, B_s) dB_s + \frac{1}{2} \int_0^t f_{xx}(s, B_s) ds$$

where subscript t denotes partial derivative w.r.t. first argument, x denotes partial derivative and xx denotes double derivative w.r.t. second argument.

In short form

$$df(t,B_t) = f_t(t,B_t)dt + f_x(t,B_t)dB_t + \frac{1}{2}f_{xx}(t,B_t)dt$$

Example

- Consider $f(t, B_t) = \exp(\theta B_t \theta^2 t/2)$
- Then $f_t(t,x) = -\frac{\theta^2}{2}f(t,x)$, $f_x(t,x) = \theta f(t,x)$ and $f_{xx}(t,x) = \theta^2 f(t,x)$.
- By Ito's lemma

$$f(t,B_t) = f_t(t,B_t)dt + f_x(t,B_t)dB_t + \frac{1}{2}f_{xx}(t,B_t)dt$$

so that

$$\exp(\theta B_t - \theta^2 t/2) = 1 + \theta \int_0^t \exp(\theta B_s - \theta^2 s/2) dB_s$$

and is a martingale.

Itô's Process

Itô's Process

A process $(X_t)_{t\geq 0}$ is an **Itô's process** if it is defined by:

$$dX_t = \mu_t dt + \sigma_t dB_t$$

Actual Meaning (Integral Form):

$$X_t = X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dB_s$$

• where drift process $(\mu_t : t \leq T)$ and diffusion process $(\sigma_t : t \leq T)$ are adapted - μ_s and σ_s are \mathcal{F}_s -measurable for each s.

General Itô's Formula (for $f(t, X_t)$)

Itô's Formula for $f(t, X_t)$

Let f(t,x) be a function that is continuous in t and twice continuously differentiable in x, and let X_t be an Itô process: $dX_t = \mu_t dt + \sigma_t dB_t$. The new representation for $f(t,X_t)$ obtained refining the telescopic expansion has the form :

$$df(t,X_t) = f_t dt + f_x dX_t + \frac{1}{2} f_{xx} dX_t^2$$

where
$$dX_t^2 = (\mu_t dt + \sigma_t dB_t)^2$$
:

$$dX_t^2 = \mu_t^2 (dt)^2 + 2\sigma_t \mu_t (dtdB_t) + \sigma_t^2 (dB_t)^2$$

General Itô's Formula (for $f(t, X_t)$)

Rules for second order terms

- $dB_t \cdot dB_t = dt$ (Quadratic Variation of BM)
- $dt \cdot dt = \lim_{n \to \infty} \sum_{i=0}^{n} (t_{i+1} t_i)^2 = 0$
- $dt \cdot dB_t = \lim_{n \to \infty} \sum_{i=0}^{n-1} (t_{i+1} t_i) (B_{t_{i+1}} B_{t_i}) = 0.$
- It follows that

$$\mathrm{dX}_{\mathrm{t}}^{2}=\sigma_{\mathrm{t}}^{2}\mathrm{dt}$$

General Itô's Formula (for $f(t, X_t)$)

Thus,

$$df(t,X_t) = f_t dt + f_x dX_t + \frac{1}{2} f_{xx} \sigma_t^2 dt$$

Integral Form:

$$f(t, X_t) = f(0, X_0) + \int_0^t \left(f_t + f_x \mu_s + \frac{1}{2} f_{xx} \sigma_s^2 \right) ds + \int_0^t f_x \sigma_s dB_s$$

Example, Ito process

Consider an asset price process

$$dS_t = \mu_t S_t dt + \sigma_t S_t dB_t \tag{1}$$

where $\{\mu_t S_t\}$ and $\{\sigma_t S_t\}$ are adapted processes.

• Let $Y_t = \log S_t$. Applying Itô's Lemma $(f(S_t) = \log S_t)$.

$$dY_{t} = \frac{1}{S_{t}}dS_{t} - \frac{1}{2}\frac{1}{S_{t}^{2}}\sigma_{t}^{2}S_{t}^{2}dt = (\mu_{t} - \frac{1}{2}\sigma_{t}^{2})dt + \sigma_{t}dB_{t}$$

$$\Rightarrow \ln S_t = \ln S_0 + \int_0^t (\mu_s - \frac{1}{2}\sigma_s^2) ds + \int_0^t \sigma_s dB_s$$

• Therefore (1) is equivalent to

$$S_t = S_0 e^{\int_0^t (\mu_s - \frac{1}{2}\sigma_s^2)ds + \int_0^t \sigma_s dB_s}$$

Example, deterministic integrand

- Consider $X_t = \int_0^t f(s) dB_s$. What is the distribution of X_t ? (here $dX_t = f(t) dB_t$)
- Let $U_t = \exp(\theta \int_0^t f(s) dB_s \frac{\theta^2}{2} \int_0^t f(s)^2 ds)$.
- Let

$$W_t = \theta \int_0^t f(s) dB_s - \frac{\theta^2}{2} \int_0^t f(s)^2 ds$$

denote an Ito process. $U_t = e^{W_t}$.

By Ito's lemma

$$dU_t = U_t dW_t + \frac{1}{2}U_t(dW_t)^2.$$

It follows that

$$dU_t = \theta U_t f(t) dB_t - \frac{\theta^2}{2} U_t f(t)^2 dt + \frac{\theta^2}{2} U_t f(t)^2 dt = \theta U_t f(t) dB_t.$$

- Hence, U_t is a martingale and $EU_t = EU_0 = 1$.
- Therefore

$$\exp\left(\theta \int_0^t f(s)dB_s\right) = \exp\left(\frac{\theta^2}{2} \int_0^t f(s)^2 ds\right).$$

What is the distribution of $\int_0^t f(s)dB_s$?

